

TEST REPORT

CLIENT	Novalis International - NC
--------	----------------------------

	ASTM E662 Smoke Density (Flaming) Standard Test Method for Specific
TEST METHOD CONDUCTED	Optical Density of Smoke Generated by Solid Materials also referenced
	as NFPA 258

	DESCRIPTION OF TEST SAMPLE
IDENTIFICATION	TDP2215064819
COLOR	NLP101
LOT NUMBER	TY20190123
CONSTRUCTION	PVC Vinyl
BACKING	PVC Vinyl
REFERENCE	Coating: Polyurethane

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

jere and the second of the sec	today / thanking commoderation in a processing of deployment commons in a marking mode.					
	CONDITIONS					
PREDRYING OF TEST SAMPLE 24 Hours at 140° F						
CONDITIONING OF TEST SAMPLE	24 Hours at 70° F and 50%	24 Hours at 70° F and 50% Relative Humidity				
TESTING CONDITION	As Received	As Received				
FURNACE VOLTAGE	118 V	IRRADIANCE	2.5 watts/sq cm			
CHAMBER TEMPERATURE	95° F CHAMBER PRESSURE 3" H ₂ O					
TEST MODE	Flaming					

AVERAGE MAXIMUM DENSITY CORRECTED (•	FLAMING	197
AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0	MINUTES		209
	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	223.0	216.0	229.0
Time to Dm (minutes)	5.0	4.5	5.5
Clear Beam (Dc)	28.0	20.0	30.0
Corr. Max Density (Dmc)	195.0	196.0	199.0
Density at 1.5 minutes	98.0	104.0	102.0
Density at 4.0 minutes	210.0	204.0	212.0
Time to 90% Dm (minutes)	3.5	3.0	3.5
Specimen Weight (grams)	21.3	21.4	21.8

^{*} This sample PASSES the requirements of 450 or less.

Lary aslowing

APPROVED BY:

NVIAPIAB CODE 100297-0

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the producttested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples testedand is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc. shall not be used under any circumstance in advertising to the general public.

TFI-Report 22-001135-02

Reaction to fire test
Monitoring test

Customer Novalis Global Flooring GmbH

Spichernstr. 73 50672 Köln

DE

Product Elastischer Bodenbelag/Resilient floor covering

Novalis Luxury Vinyl Tile Light Commercial

This report includes 11 pages.

Aachen, 15.12.2022 Dr. Bayram Aslan

The present document is provided with an advanced electronic signature.

This report only applies to the tested samples and has been established to the best of our knowledge. Only the entire report shall be reproduced. Under no circumstances, extracts shall be used. Furthermore, we apply the "General Terms and Conditions for the Execution of Contracts" of the TFI Aachen GmbH, also with regard to the order execution.

The test result does not include any addition or deduction for uncertainties due to measurement, sample preparation, sample collection and production tolerances.

1 Transaction

Order date 17.11.2022

Order number 22-001135 - AB2200937

Your reference Lars Grüter

Product designation Novalis Luxury Vinyl Tile Light Commercial

 Charge
 221107C

 item number
 67010016

 TFI sample number
 2202021

 Date of manufacture
 07.11.2022

 Date of sample receipt
 22.11.2022

Sampling performed by Auftraggeber/Customer

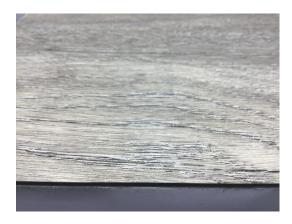
see Probenahmeprotokoll

CE-group 1658-CPR-3443

Test period 07.12.2022 - 15.12.2022

Professionally responsible for the examinations of the fire department

Ulrike Balg +49 241 9679133 u.balg@tfi-aachen.de



2 Product description

TFI Sample Number

2202021

Total thickness [mm]
Surface related mass [g/m²]
Delivery form

2,08 3570 Paneele / panels

3 Test methods / requirements

Prüfauftrag:

Testing according to EN ISO 9239-1:Part 1

a ... Die mit a gekennzeichneten Ergebnisse basieren auf nach EN ISO/IEC 17025 akkreditierten Prüfungen. / The reports marked a are based on tests accredited in accordance with EN ISO/IEC 17025.

The following applies to test method EN ISO 9239:

Deviation reduced number of specimens

Adhesion none

Substrate according to EN 13238:2010 fibre cement board

Joint according to EN ISO 9239-1:2010 none

Laboratory spray extraction cleaning

procedure

Conditioning according to EN 13238:2010

no

4 Results

Kritischer Wärmestrom in Produktionsrichtung in kW/m²	11,0
Rauchdichte in Produktionsrichtung in %xmin	201
Kritischer Wärmestrom quer zur Produktionsrichtung in kW/m²	11,0
Rauchdichte quer zur Produktionsrichtung in %xmin	173

Unless otherwise specified by the test standard, the measurement results are evaluated without taking into account the measurement uncertainty with regard to compliance with limit values.

Requirements for relevant properties product standard fulfilled according to EN ISO 10582:2018
Requirements for marking according to fire class Bfl-s1 fulfilled
Requirements for relevant properties CE group fulfilled

The test results refer only to the behavior of the samples of a construction product under the particular conditions of the test; they are not to be understood as the sole criterion for evaluating the potential fire hazard of the construction product in the application.

This test report, together with the annual audit report of the monitoring body for regular monitoring and assessment of factory production controls and product labeling, is part of the regulatory surveillance.

5 Pictures

5.1. Reaction to fire sample 1 in production direction

5.2. Reaction to fire sample 1 cross production direction

6 Partial reports

Testing according to EN ISO 9239-1:Part 1

7 Annexes

Sampling report

Partial Report RP - Reaction to fire

1 Results

Sample No.:

in production direction Direction:

Observation

molten/singed during pre-radiation up to 0 mm buckled/contracted from pilot flame area up to 0 mm penetration of flame through substrate transitory flaming blistering glowing, after flame has extinguished

Results

Light transmission

Position	Time	Heat Flow		
[mm]	[min:s]	[kW/m²]		
50	03:41	12.17		
100	-	-	[96]	
150	-	-	100 poses	
200	-	-	Marin	W14-
250	-	-	82	
300	-	-	°2	
350	-	-	Y \/	
400	-	-	64	
450	-	-		
500	-	-		
550	-	-	45	
600	-	-		
650	-	-		
700	-	-	27	
750	-	-		
800	-	-		
850	-	-	0 3 6 9 12 15 18 21 24 27	30
900	-	-		Zeit [min
950	-	-	CHF [kW/m²]	>= 11
1000	-	-	HF_30 [kW/m²]	11.97
			Smoke density integral [%*min]	201.1
Time	Position	Heat Flow	Flame extinguished after [min:s]	12:00
[min:s]	[mm]	[kW/m²]	max. burnt distance [mm]	61
10:00	61	11.97	max. light attantuation [%]	36.5
20:00	61	11.97		
30:00	61	11.97		

Page 8 of 11

Sample No.:

Direction: cross production direction

Observation

molten/singed during pre-radiation up to 0 mm buckled/contracted from pilot flame area up to 0 mm penetration of flame through substrate - transitory flaming - blistering - glowing, after flame has extinguished -

Results

Light transmission

Position [mm] 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850	Time [min:s] 03:51	Heat Flow [kW/m²] 12.17	This 100	7 30
900	_	_	0 3 0 3 2 13 13 21 24 2	7 30 Zeit [min]
950	-	-	CHF [kW/m²]	>= 11
1000	-	-	HF_30 [kW/m²]	12.08
Time [min:s] 10:00 20:00 30:00	Position [mm] 55 55 55	Heat Flow [kW/m²] 12.08 12.08 12.08	Smoke density integral [%*min] Flame extinguished after [min:s] max. burnt distance [mm] max. light attantuation [%]	172.5 12:00 55 28.1

2 Classification criteria according to EN 13501-1:2018, Table 2

Class	Test method(s)	Classification criteria	Additional classifications
	EN ISO 9239-1	Critical flux ≥ 8.0 kW / m²	Smoke production ¹
B _{fl}	EN ISO 11925-2, Exposure 15 s	Flame height ≤ 150 mm within 20 s	-
	EN ISO 9239-1	Critical flux ≥ 4.5 kW / m²	Smoke production ¹
C _{fl}	EN ISO 11925-2, Exposure 15 s	Flame height ≤ 150 mm within 20 s	-
	EN ISO 9239-1	Critical flux ≥ 3.0 kW / m²	Smoke production ¹
Dfl	EN ISO 11925-2, Exposure 15 s	Flame height ≤ 150 mm within 20 s	-
En	EN ISO 11925-2, Exposure 15 s	Flame height ≤ 150 mm within 20 s	-

 $^{^{1}}$ s1 = smoke ≤ 750 % x min, s2 = smoke > 750 % x min

Sampling Report for floor coverings according to EN14041/14342 (Order No. 22-001024)

Group/product range:	tractor:	3443	tional Ltd ad Dantu 63	67010016 textile floor covering resilient floor covering laminate wood flooring	
Sampling site (factors) Product name: Group/product range:	Novalis Luxury Viny Commercial 2,0 / 0 CE: 1658-CPR- DIBt: TÜV-Interior: 70	Guangyuan Roa 212000 Zhenjia yl Tile Light ,30 3443	ad Dantu 63 ng, CHINA VR Article number:	textile floor covering resilient floor covering laminate	
Product name: N C Group/product range:	Novalis Luxury Viny Commercial 2,0 / 0, ☐ CE: 1658-CPR- ☐ DIBt: ☐ TÜV-Interior: 70	212000 Zhenjia yl Tile Light ,30 3443	ng, CHINA VR Article number:	textile floor covering resilient floor covering laminate	
Group/product range:	Commercial 2,0 / 0, ☑ CE: 1658-CPR- ☑ DIBt: ☑ TÜV-Interior: 70	3443		textile floor covering resilient floor covering laminate	
				surface for sports areas	
Batch no.: 2			Production date of batch:	2022/11/07	
Sampling date and t	time:		2022/11/17 / 18:00		
Sample taken			Storage mode:	☐ exposed ☐ packed	
Storage ocation:	Warehouse		Packaging material:	Carton Box	
Size of sample:	228.6X1516.88mm	1			
Particular remarks: Possible negative impacts missions at the sampling uestions etc.)	s caused by site, problems,	☐ taken as retain ☐ gas driven forkli	sample according to MVV ft	TB instructions ting based on approval principles	
Planned tests:	ire class (RP) Initial type test) ssion Monitoring		number of samples n testing (Monitoring)	☐ PCP ☐ Small Burner Test	
ire class: bfl-s1		ed glue	d with:		
technical datashe	et will be submitted	to TFI within 3 day	/s \technical datash	neet is attached	
ereby the signatories acked in accordance	s confirm the corre with the sampling	ctness of the ab	ove information. The sam	ple was hand selected and	
Signature of the day	Rem Impler (in case of third par	rhu nampling\	Candy	Ren	

(DAkkS

TFI Aachen GmbH Charlottenburger Allee 41 52068 Aachen · Germany Tel: +49.241.9679 00 www.tfi-aachen.de

SCS Global Services does hereby certify that an independent assessment has been conducted on behalf of:

Novalis Innovative Flooring

200 Munekata Dr. SE, Dalton, GA, United States

For the following product(s):

Vinyl Tile:

CN Luxury Vinyl Tile (LVT), CN Loose Lay LVT (LLT), CN Acoustical Loose Lay LVT (ALLT), CN Flexible LVT Click (5G), CN High Density Core (HDC) Click with Underlayment, CN High Density Core (HDC) Click without Underlayment, CN High Performance Core (HPC) Click with Underlayment, CN High Performance Core (HPC) Click without Underlayment, CN Peel & Stick Floor Tile (LVT-PS), CN Peel & Stick Wall and Floor Tile (LVT-W-PS), US High Density Core (HDC) Click with Underlayment

The product(s) meet(s) all of the necessary qualifications to be certified for the following claim(s):

FloorScore[®]

Indoor Air Quality Certified to SCS-EC10.3-2014 v4.1

Conforms to the CDPH/EHLB Standard Method v1.2-2017 (California Section 01350), effective April 1, 2017, for the school classroom and private office parameters when modeled as Flooring.

Measured Concentration of Total Volatile Organic Compounds (TVOC): Less than/equal to 0.5 mg/m³ (in compliance with CDPH/EHLB Standard Method v1.2-2017)

Registration # SCS-FS-06121

Valid from: June 1, 2023 to April 30, 2024

SCS Global Services is currently the only certification body approved by the Resilient Floor Covering Institute (RFCI) to provide FloorScore® product certification; certified products are only listed on the SCS Green Products Guide, http://www.scsglobalservices.com/certified-green-products-guide.

Stanley Mathuram, PE, Executive Vice President SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA

CERTIFICATE

Environmental Management System Certificate

Certificate Number:00221E32133R4M

CQM hereby certifies that

Decoria Materials (Jiangsu) Co., Ltd.

Unified Social Credit Identifier: 91321100661324301G

Domicile:No.23, Shengyuan Road, Dantu City Industrial Park, Zhenjiang City, Jiangsu, P.R.China Certification Add.:No.23, Shengyuan Road, Dantu City Industrial Park, Zhenjiang City, Jiangsu, P.R.China

the management system conform to

GB/T 24001-2016/ISO 14001:2015

This certificate is valid to the following scope:

Design, development and production of PVC plastic floor tiles and relevant management activities

(The information of this certificate can be inquired on www.cnca.gov.cn or website of CQM. The continual validity of the certificate can be checked by Certificate Confirmation of surveillance.)

Issued on: 2021-06-15 Expires on: 2024-12-14

AA 0000196

中国认可 国际互认 管理体系 MANAGEMENT SYSTEM CNAS C002-M

方圆标志认证集团

CHINA QUALITY MARK CERTIFICATION GROUP

地址. 北京市海淀区增光路33号(100048) Address: No.33, Zengguang Road, Haidian District, Beijing, P.R. China (100048)

http://www.cqm.com.cn

EPD Transparency Summary

Novalis Innovative Flooring **COMPANY NAME**

Novalis Glue Down (GD) LVT

PRODUCT NAME

Novalis Glue Down LVT features a wide range of beautiful flooring

options for many applications. The product has excellent stain-, scratch-,

PRODUCT DESCRIPTION and dent-resistance.

> Product Category Rules for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements,

PRODUCT CATEGORY RULE Standard 10010, Version 3.2

(PCR)+ VERSION Part B: Flooring EPD Requirements, UL 10010-7, Version 2.0

1/1/2020 - 1/1/2025

DECLARATION NUMBER 4789201527.101.1

EPD TYPE PRODUCT SPECIFIC **INDUSTRY AVERAGE**

1 m2 DECLARED/

FUNCTIONAL UNIT

CERTIFICATION PERIOD

GREEN BUILDING QUALIFICATIONS

LEED v4 Building Product Disclosure and IgCC Material Compliance Optimization - EPDs, Option 1 Green Globes 3.5.1.2.1 ASHRAE 189.1 Material Compliance NAHB Material Selection

Commercial: 10 Years; Residential: 25 Years REFERENCE SERVICE LIFE (IF APPLICABLE)

LCA SOFTWARE + VERSION SimaPro 9

IMPACT ASSESSMENT METHOD + VERSION CML-IA (baseline) & TRACI

LIFECYCLE IMPACT CATEGORIES

The environmental impacts listed below were assessed through the product's production phase (cradle to gate impacts).

		ATMOSPHERE		WA	ATER	EAR	тн
		0			63	<u>a</u>	A
	Global Warming Potential refers to long-term changes in global weather patterns that are caused by increased concentrations of greenhouse gases in the atmosphere.	Ozone Depletion Potential is the destruction of the stratospheric ozone layer, which shields the earth from ultraviolet radiation that's harmful to life, caused by human-made air pollution.	Photochemical Ozone Creation Potential happens when sunlight reacts with hydrocarbons, nitrogen oxides, and volatile organic compounds, to produce air pollution known as smog.	Acidification Potential is the result of human-made emissions and refers to the decrease in pH and increase in acidity of oceans, lakes, rivers, and streams – polluting groundwater and harming aquatic life.	Eutrophication Potential occurs when excessive nutrients cause increased algae growth in lakes, blocking the underwater penetration of sunlight needed to produce oxygen and resulting in the loss of aquatic life.	Depletion of Abiotic Resources (Elements) refers to the reduction of available non- renewable resources, such as metals, that are found on the periodic table of elements, due to human activity.	Depletion of Abiotic Resources (Fossil Fuels) refers to the decreasing availability of non- renewable carbon- based compounds, such as oil and coal, due to human activity.
TRACI	8.75E+00 kg CO ₂ -Equiv.	1.96E-07 kg CFC 11-Equiv.	4.90E-01 kg O ₃ -Equiv.	4.75E-02 kg SO ₂ -Equiv.	1.33E-02 kg N-Equiv.	kg Sb-Equiv.	MJ
CML	8.75E+00 kg CO ₂ -Equiv.	1.65E-07 kg R11-Equiv.	2.11E-03 kg Ethene-Equiv.	4.68E-02 kg SO ₂ -Equiv.	8.66E-03 kg PO ₄ -Equiv.	5.89E-06 kg Sb-Equiv.	1.38E+02 MJ

Environment

© 2018 UL Environment

MATERIAL CONTENT

Material content measured to 1%.

COMPONENT	MATERIAL	AVAILABILITY	MASS%	ORIGIN
Substrate - Plasticizer	(Bio) Plasticizer + DOTP	Renewable	5.96-10.16	China
Substrate	CaCO3	Non-Renewable	15.23-68.74	China
Substrate	Polyvinyl Chloride (PVC)	Non-Renewable	17.77-36.87	China
Substrate	Epoxized Soybean Oil	Renewable	0.89-1.37	China
Substrate	Calcium Stearate	Non-Renewable	0.29-0.55	China
Substrate	Zinc Stearate	Non-Renewable	0.22-0.44	China
Substrate	Carbon Black	Non-Renewable	0.05-0.16	China
Substrate	Mg(OH)2	Non-Renewable	0-8.05	China
Wear layer	Polyvinyl Chloride (PVC)	Non-Renewable	1.50-24.49	China
UV coating	Urethane Acrylates	Non-Renewable	0.33-0.77	China
Film	TiO2	Non-Renewable	1.12-2.56	China

As Novalis Glue Down LVT has a number of specifications, the component percentages are therefore presented with a range of values.

ADDITIONAL ENVIRONMENTAL INFORMATION

WATER CONSUMPTION	9.70 L/m2				
VOC EMISSIONS	< 0.5 mg/m3 (14 days)				
POST-CONSUMER RECYCLED CONTENT	0 %				
PRE-CONSUMER RECYCLED CONTENT	0 %				

ENERGY

RENEWABLE ENERGY	14.8 %	44.8 MJ
NON-RENEWABLE ENERGY	85.2 %	258 M J

MANUFACTURER CONTACT INFO

NAME	Nicole Granath					
PHONE	+862153966818 (China)/+18778615292 (U.S.)					
EMAIL	nicole.granath@novalis-intl.com					
WEBSITE	www.novalisinnovativeflooring.com					

© 2018 UL Environment

www.UL.com/environment | environment@ul.com

RECYCLING OR REUSE

Novalis partners with a recycler in the U.S. for pre-consumer recycling of LVT flooring. Novalis is also working with its large retail customers to develop a take-back program for the reuse and recycling of LVT flooring. When unable to be reused, they will be ground up and recycled into flooring or other products, such as rubber hoses, car mats, speed bumps, paneling, and more.

STANDARDS

Density

CERTIFICATIONS - ASTM F1700 - Solid Vinyl Tile - ASTM F1914 - Residual Indentation - ASTM F137 - Flexibility - ASTM F2199 -Dimensional Stability - ASTM F925 - Chemical Resistance - ASTM F1514 - Heat Color Stability - ASTM F1515 - Light Color Stability - ASTM F970-Static Load Limit - ASTM F970 - Modified for Max Weight - ASTM E648 (NFPA 253) - Critical Radiant Flux - ASTM E662 (NFPA 258) - Smoke

CERTIFICATEOF COMPLIANCE

Novalis Innovative Flooring

CN Luxury Vinyl Tile (LVT)

102374-420

Certificate Number

03 Nov 2017 - 03 Nov 2023

Certificate Period

Certified

Status

UL 2818 - 2013 Gold Standard for Chemical Emissions for Building Materials, Finishes and Furnishings

Flooring products are determined compliant in accordance with California Department of Public Health (CDPH) Standard Method V1.2-2017 using a Classroom Environment.

Product tested in accordance with UL 2821 test method to show compliance to emission limits on UL 2818. Section 7.1 and 7.2.

GREENGUARD Gold Certification Criteria for Building Products and Interior Finishes

Criteria	CAS Number	Maximum Allowable Predicted Concentration	Units
TVOC (A)	-	0.22	mg/m³
Formaldehyde	50-00-0	9 (7.3 ppb)	μg/m³
Total Aldehydes (B)	-	0.043	ppm
4-Phenylcyclohexene	4994-16-5	6.5	μg/m³
Particle Matter less than 10 µm (C)	-	20	μg/m³
1-Methyl-2-pyrrolidinone (D)	872-50-4	160	μg/m³
Individual VOCs (E)	-	1/2 CREL or 1/100th TLV	-

- (A) Defined to be the total response of measured VOCs falling within the C6 C16 range, with responses calibrated to a toluene surrogate. Maximum allowable predicted TVOC concentrations for GREENGUARD Gold (0.22 mg/m³) fall in the range of 0.5 mg/m³ or less, as specified in CDPH Standard Method v1.2.
- (B) The sum of all measured normal aldehydes from formaldehyde through nonanal, plus benzaldehyde, individually calibrated to a compound specific standard. Heptanal through nonanal are measured via TD/GC/MS analysis and the remaining aldehydes are measured using HPLC/UV analysis.
- (C) Particle emission requirement only applicable to HVAC Duct Products with exposed surface area in air streams (a forced air test with specific test method) and for wood finishing (sanding) systems.
- (D) Based on the CA Prop 65 Maximum Allowable Dose Level for inhalation of 3,200 μg/day and an inhalation rate of 20 m³/day
- (E) Allowable levels for chemicals not listed are derived from the lower of 1/2 the California Office of Environmental Health Hazard Assessment (OEHHA) Chronic Reference Exposure Level (CREL) as required per the CDPH/EHLB/Standard Method v1.2 and BIFMA level credit 7.6.2 and 1/100th of the Threshold Limit Value (TLV) industrial work place standard (Reference: American Conference of Government Industrial Hygienists, 6500 Glenway, Building D-7, and Cincinnati, OH 45211-4438).

ZERTIFIKAT

für

TÜV PROFICERT-product Interior PREMIUM

Nachstehende(s) Produkt/Produktgruppe erfüllt die Vergabekriterien V1.3 der Zertifizierung "TÜV PROFiCERT-product Interior". Dieses Zertifikat entbindet den Hersteller nicht von seiner Verantwortung für die Erfüllung aller gesetzlichen Vorgaben und Produkteigenschaften.

Novalis International Ltd.
Unit F, 10th Floor, CNT Tower, 338 Hennessy Road
Wanchai
Hong Kong

NOVALIS LUXURY VINYL TILES

Ergebnis der Emissionsprüfung: TÜV PROFiCERT-product Interior PREMIUM erfüllt Damit werden auch die folgenden Emissionsgrenzwerte eingehalten:

√	AgBB	√	BREEAM Exemplary Level	√	Österreichisches Umweltzeichen UZ 42
√	A+	√	Finnische M1-Klassifzierung	√	MVV TB Anhang 8 / ABG
√	Belgische VOC-Verordnung	1	LEED v4 (outside North America)	√	CAM Italien

Zertifikat-Registrier-Nr. 70 710 6478-2

Zertifikat gültig von 2022-08-15 bis 2025-08-14

Auditbericht-Nr. 22-000798

Erstzertifizierung 2019-09-24

Darmstadt, 2022-08-15 Zertifizierungsstelle des TÜV Hessen – Der Zertifizierungsstellenleiter –

CERTIFICATE

for

TÜV PROFiCERT-product Interior PREMIUM

The following product/product group particularly fulfills the criteria V1.3 of the TÜV PROFi-CERT-product Interior certification. This certificate does not acquit the producer of his responsibility to comply with all legal requirements and product properties.

Novalis International Ltd.
Unit F, 10th Floor, CNT Tower, 338 Hennessy Road
Wanchai
Hong Kong

NOVALIS LUXURY VINYL TILES

Result of the emission testing: TÜV PROFiCERT-product Interior PREMIUM fulfilled Thus, the results comply with the emission thresholds of

	AgBB	√	BREEAM Exemplary Level	√	Austrian Eco Label UZ 42
√	A+	√	Finnish M1 classification	√	MVV TB Annex 8 / ABG
√	Belgian VOC regulation	√	LEED v4 (outside North America)	1	CAM Italy

Certificate registration No. 70 710 6478-2

Certificate valid from 2022-08-15 to **2025-08-14**

Audit report No. 22-000798

First certification 2019-09-24

Darmstadt, 2022-08-15 Certification body of TÜV Hessen – Head of Certification body –